-6(x^2-9)=4x^2-146

Simple and best practice solution for -6(x^2-9)=4x^2-146 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6(x^2-9)=4x^2-146 equation:



-6(x^2-9)=4x^2-146
We move all terms to the left:
-6(x^2-9)-(4x^2-146)=0
We multiply parentheses
-6x^2-(4x^2-146)+54=0
We get rid of parentheses
-6x^2-4x^2+146+54=0
We add all the numbers together, and all the variables
-10x^2+200=0
a = -10; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-10)·200
Δ = 8000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8000}=\sqrt{1600*5}=\sqrt{1600}*\sqrt{5}=40\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{5}}{2*-10}=\frac{0-40\sqrt{5}}{-20} =-\frac{40\sqrt{5}}{-20} =-\frac{2\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{5}}{2*-10}=\frac{0+40\sqrt{5}}{-20} =\frac{40\sqrt{5}}{-20} =\frac{2\sqrt{5}}{-1} $

See similar equations:

| 3x-5=12x-57 | | 4+9x+8=18+2x | | 4.5x=20000 | | 2(x+4)+5(x+1)=27 | | 5x=17500 | | 6x=15000 | | 2/3k-k=7/8 | | 4x=20000 | | v(7.1)=80.23 | | 6x-9=22 | | 20x+30x=1 | | h+.67=-1.34 | | 2y+6=4y-10 | | 2-13.8x=8-(6x+1) | | y-6.22=2.53 | | 3/8=11x | | 5x+5+3x=21 | | X^2-15x-940=0 | | 2/x=18 | | x^+2x=783 | | (3-z)(3z-5)=0 | | 3/w+5=8 | | 234x-94x-108x=788 | | 0.90x+0.05(4-x)=0.10(87) | | 3^(x+4)=27 | | 0.9x-1.4=1.7x+2.3 | | 6/2x+3=5 | | 5(m+3)+2m=27 | | 5(x-3)=4x-20 | | 30x=22x+60 | | 3x=6x-82 | | 0.5x-1.9=3.7x+1.6 |

Equations solver categories